EULAR update

Dr. Marinka Twilt
Abstract sessions
Angiogenesis and blood vessel stability in Giant Cell Arteritis

- Pathogenesis unknown but involves vascular remodeling, inflammatory infiltrate arterial wall
- Aim: assess blood vessel stability and oxidative damage in GCA patients and correlation with disease activity
- 20 patients with GCA included (16 positive temporal artery biopsy)
- Results: unstable inflamed vessels in GCA, associated with EC/pericyte interaction, expression of Ang2 and oxidative damage markers
TLR4 and VEGF polymorphism in chronic periaortitis

F. Atzeni et al. [OP0180] Ann rheum dis 2012;71(suppl3):115

- Chronic periaortitis (CP) is a rare disease
- TLR4 and VEGF are associated with inflammatory diseases
- 102 CP and 200 healthy controls genotyping
- No difference TLR4 allele frequency or genotype in CP or healthy controls
- Polymorphisms in (II+ID) VEGF associated with increased risk ureteral obstruction (heterozygote) and thrombosis (homozygote)
Retrospective monocentric cohort of orbital masses in granulomatosis

• 1142 GPA patients (1988-2011)
• 53 orbital mass, 40 complete dataset
• 1/3 bilateral involvement, 70% origin paranasal sinuses
• Clinical: diplopia, orbital pain, propoptosis, reduced eye motility, reduced vision
• Most frequent on patients without systemic vasculitis symptoms
• Refractory disease in 40%
Burden of childhood CNS vasculitis: identifying high risk factors for poor cognitive outcome

• 111 children with childhood cns-vasculitis
• 70 completed neurocognitive evaluation
• 53% of small vessel disease and 27% of large vessel disease are cognitive impaired (FSIQ<85)
• Risk factors: seizures
General sessions
News in vasculitis

D. Jayne.

- Incidence AAV in Europe stable
- First GWAS in AAV (Chr 6, serpina 1, PRTN3)
- 2 new antibodies: hLAMP-2 and anti-plasminogen antibodies
- Role of complement in AAV (CLEAR study)
- NORAM 5 year results: more steroids in MTX than CYC arm
- Rituximab in AAV (still not clear maintenance/induction)
- Mepolizumab for EGPA (CSS)
Chapel Hill 2012 Classification

- Large Vessel Vasculitis (LVV)
- Medium Vessel Vasculitis (MVV)
- Small Vessel Vasculitis (SVV)
- Variable Vessel Vasculitis (VVV)
- Single Organ Vasculitis (SOV)
- Vasculitis Associated with Systemic Disease
- Vasculitis with Probable Etiology
Chapel Hill 2012 Classification

• Large Vessel Vasculitis (LVV)
 – Takayasu Arteritis (TAK)
 – Giant Cell Arteritis (GCA)
• Medium Vessel Vasculitis (MVV)
• Small Vessel Vasculitis (SVV)
• Variable Vessel Vasculitis (VVV)
• Single Organ Vasculitis (SOV)
• Vasculitis Associated with Systemic Disease
• Vasculitis with Probable Etiology
Chapel Hill 2012 Classification

- Large Vessel Vasculitis (LVV)
- Medium Vessel Vasculitis (MVV)
 - Polyarteritis Nodosa (PAN)
 - Kawasaki Disease (KD)
- Small Vessel Vasculitis (SVV)
- Variable Vessel Vasculitis (VVV)
- Single Organ Vasculitis (SOV)
- Vasculitis Associated with Systemic Disease
- Vasculitis with Probable Etiology
Chapel Hill 2012 Classification

- Large Vessel Vasculitis (LVV)
- Medium Vessel Vasculitis (MVV)
- Small Vessel Vasculitis (SVV)
 - AAV
 - Microscopic Polyangiitis (MPA)
 - Granulomatosis with Polyangiitis (GPA)
 - Eosinophilic Granulomatosis with Polyangiitis (EGPA)
- Variable Vessel Vasculitis (VVV)
- Single Organ Vasculitis (SOV)
- Vasculitis Associated with Systemic Disease
- Vasculitis with Probable Etiology
Chapel Hill 2012 Classification

• Large Vessel Vasculitis (LVV)
• Medium Vessel Vasculitis (MVV)
• Small Vessel Vasculitis (SVV)
 – Immune complex SVV
 • Anti-GBM disease
 • Cryoglobulinemic Vasculitis
 • IgA Vasculitis (HSP)
 • Hypocomplementemic Urticarial Vasculitis
• Variable Vessel Vasculitis (VVV)
• Single Organ Vasculitis (SOV)
• Vasculitis Associated with Systemic Disease
• Vasculitis with Probable Etiology
Chapel Hill 2012 Classification

- Large Vessel Vasculitis (LVV)
- Medium Vessel Vasculitis (MVV)
- Small Vessel Vasculitis (SVV)
- Variable Vessel Vasculitis (VVV)
 - Behçet Disease (BD)
 - Cogan’s Syndrome
- Single Organ Vasculitis (SOV)
- Vasculitis Associated with Systemic Disease
- Vasculitis with Probable Etiology
Chapel Hill 2012 Classification

- Large Vessel Vasculitis (LVV)
- Medium Vessel Vasculitis (MVV)
- Small Vessel Vasculitis (SVV)
- Variable Vessel Vasculitis (VVV)
- Single Organ Vasculitis (SOV)
 - Cutaneous Leukocytoclastic Angiitis
 - Cutaneous Arteritis
 - Primary Angiitis of the CNS (PACNS)
 - Isolated Aortitis
- Vasculitis Associated with Systemic Disease
- Vasculitis with Probable Etiology
Chapel Hill 2012 Classification

• Large Vessel Vasculitis (LVV)
• Medium Vessel Vasculitis (MVV)
• Small Vessel Vasculitis (SVV)
• Variable Vessel Vasculitis (VVV)
• Single Organ Vasculitis (SOV)
• Vasculitis Associated with Systemic Disease
 – Lupus vasculitis
 – Rheumatoid vasculitis
 – Sarcoid vasculitis
• Vasculitis with Probable Etiology
Chapel Hill 2012 Classification

- Large Vessel Vasculitis (LVV)
- Medium Vessel Vasculitis (MVV)
- Small Vessel Vasculitis (SVV)
- Variable Vessel Vasculitis (VVV)
- Single Organ Vasculitis (SOV)
- Vasculitis Associated with Systemic Disease
- Vasculitis with Probable Etiology
 - HCV-associated cryoglobulinemic vasculitis
 - Drug-associated immune complex vasculitis
 - Drug-associated ANCA-associated Vasculitis
 - Cancer associated vasculitis
Classification and diagnosis of vasculitis

- DCVAS study undertaken at the moment in > 40 centers and plan to include > 2000 patients
- Currently 900 included
- ongoing
Long-term outcomes in systemic vasculitis

- Long-term follow-up of the first 4 RCTs of EUVAS
- 535 patients (281 GPA, 254 MPA)
- 46% female, 53% PR3-ANCA, median BVAS 17
- Overall mortality higher than age matched population (2.6)
- Highest death risk in 1st year (active vasculitis or infection)
- Predictors mortality: older age at onset, renal insufficiency, higher BVAS
Poster sessions selection
Serum angiopoietin-2 level strongly reflects the disease activity and renal function in AAV

• Ang-2 key mediator of endothelial cell activation
• 59 AAV patients (MPA 27, GPA 15, EGPA 14, other 3)
• ANG-2 correlated with high BVAS, CRP, serum creatinine, urinary protein excretion and negatively correlated with est GFR
Cross-sectional assessment of damage in Takayasu arteritis with a validated tool

- 103 TAK patients f-up > 6 months
- Vascular damage index used for damage of TAK
- VDI scores in TAK patients identical to systemic necrotizing vasculitis patients
- Longer disease duration, higher GC and CY exposure correlated with VDI
Efficacy of anti-TNF therapy in 15 patients with refractory Takayasu’s arteritis: long term unicentric follow-up

- 15 TAK patients (2004-2011)
- Mean follow-up 46 months
- 13 infliximab, 5 adalimumab, 1 golimumab
- Reduction of prednisone, CRP, ESR during follow-up
- Revascularisation procedure lesions worsened during treatment while naïve lesions improved
- Possible different pathophysiology revascularization treated and naïve lesions improved
Differences in clinical presentation and outcome in patients with early versus late onset Giant cell arteritis: analysis of 94 patients

• 170 patients with GCA (1995-2005) biopsy proven
• 94 met inclusion criteria
• 3 groups < 67 (n=16), 68-80 (n=57), > 81 (n=21)
• Early onset: more fever, high ESR
• Late onset: high frequency amaurosis fugax and blindness
• Less relapse in late onset group
Successful maintenance treatment of granulomatosis with polyangiitis with rituximab- a case series

A. Knight et al. [AB0751] Ann Rheum Dis 2012;71 (suppl 3):681

• Retrospective study of 11 patients
• All PR3 positive, previously treated with different immunosuppressant including CYC and GC.
• Median of 4 (2-11) Rituximab infusion for relapse
• Median follow-up 18 months after 1 infusion (range 9-96)
• No relapses during follow-up 7 pt in remission (BVAS 0 and GC < 7.5)
• Well-tolerated, but 7 infections requiring antibiotics during follow-up (1 Pneumocystis Jiroveci)